Hizo los estudios de matemáticas a pesar de la presión de su familia para hacer carrera en otros ámbitos
Jacob Bernoulli matemático, nació el 27 de diciembre de 1654, y murió el 16 de agosto de 1705 en Basilea (Suiza). Su familia, de origen Bélga, eran refugiados que huían de la persecución de los gobernantes de los Países Bajos españoles. Felipe, el rey de España, había enviado al duque de Alba en los países bajos en 1567, un gran ejército para castigar a quienes se opusiese a la dominación española, para exigir la adhesión al catolicismo romano y a restablecer la autoridad de Philip. Alba estableció el Consejo de problemas que era un tribunal que condenó a más de 12000 personas, una de ellas la familia Bernoulli que eran de la fe protestante, y huyeron del país. Su padre, Nicolaus Bernoulli era un ciudadano importante de Basilea, siendo miembro del Consejo de la ciudad y un magistrado. La madre de Jacob Bernoulli también vino de una importante familia de Basilea de banqueros y concejales.
Jacob Bernoulli era el hermano de Johann Bernoulli y el tío de Daniel Bernoulli. Él se vio obligado a estudiar filosofía y teología por sus padres, y se deprimió profundamente, se graduó en la Universidad de Basilea con una maestría en filosofía en 1671 y un licenciado en teología en 1676.
Pasado el tiempo Jacob Bernoulli hizo estudios universitarios de matemáticas y astronomía contra los deseos de sus padres. Cabe señalar que se trataba de un patrón típico para muchos de la familia Bernoulli, el hizo los estudios de matemáticas a pesar de la presión de su familia para hacer carrera en otros ámbitos. Sin embargo Jacob Bernoulli fue el primero en ir por este camino, así que para él era muy diferente ya que no había ninguna tradición de las matemáticas en la familia antes de Jacob Bernoulli. Miembros posteriores de la familia deben haber sido muy influenciados por la tradición de estudiar matemáticas y física matemática.
En 1676, tras su licenciatura en teología, Bernoulli se trasladó a Ginebra donde trabajó como un tutor. Luego viajó a Francia pasados dos años estudiando con los seguidores de Descartes que fueron conducidos en este momento por Malebranche. En 1681 Bernoulli viajó a Holanda donde conoció a muchos matemáticos incluyendo Hudde. Continuando sus estudios con los principales matemáticos y científicos de Europa se fue a Inglaterra donde, entre otros, se reunió con Boyle y Hooke. En este momento él estaba profundamente interesado en la astronomía y produjo una obra dando una teoría incorrecta de los cometas. Como resultado de sus viajes, Bernoulli comenzó una correspondencia con muchos matemáticos que llevó durante muchos años.
Jacob Bernoulli regresó a Suiza y enseñó la mecánica en la Universidad de Basilea desde 1683, dando una serie de importantes conferencias sobre la mecánica de sólidos y líquidos. Desde su licenciatura en teología habría sido natural para él volver a la iglesia, pero aunque se le ofreció una cita en la iglesia lo rechazó. El amor verdadero de Bernoulli era las matemáticas y la física teórica y fue en estos temas que él enseñó e investigó. Durante este período estudió las principales obras matemáticas de su tiempo como Descartes' geometría y van Schootende material adicional en la edición Latina. Jacob Bernoulli también estudió el trabajo de Wallis y Barrow y a través de estos se interesó por la geometría infinitesimal . Jacob comenzó a publicar en la revista Acta Eruditorum que se estableció en Leipzig en 1682.
En 1684 Jacob Bernoulli se casó con Judith Stupanus. Tuvo dos hijos, un hijo que le dio el nombre de su abuelo de Nicolaus y una hija. Estos niños, a diferencia de muchos miembros de la familia Bernoulli, no van a ser matemáticos o físicos.
Uno de los eventos más significativos con respecto a los estudios matemáticos de Jacob Bernoulli ocurrió cuando su hermano menor, Johann Bernoulli, comenzó a trabajar sobre temas de matemáticas. Johann fue obligado por su padre a estudiar medicina pero mientras estudiaba ese tema preguntó a su hermano Jacob para que le enseñe matemáticas. Jacob Bernoulli fue nombrado profesor de matemáticas en Basilea en 1687 y los dos hermanos comenzaron a estudiar el cálculo presentado por Leibniz en su papel de 1684 en el cálculo diferencial en Nova Methodus pro Maximis et Minimis, itemque Tangentibus... publicado en Acta Eruditorum. También estudiaron las publicaciones de von Tschirnhaus. Debe entenderse que publicaciones de Leibnizsobre el cálculo eran muy oscuro para los matemáticos de la época y los Bernoullis fueron los primeros en tratar de comprender y aplicar las teorías de Leibniz.
Jacob atacaba profesionalmente a su hermano de una manera vergonzosa e innecesaria, particularmente después de 1697. Él era crítico de las autoridades de la Universidad de Basilea y era público las declaraciones de críticas que, como era de esperar, lo dejaron en una situación difícil en la Universidad. Jacob probablemente sintió que Johann era el matemático más potente de los dos y, este daño la naturaleza de Jacob significó que siempre tenía que sentir que estaba ganando elogios de todos lados. Hofmann escribe:
Sensibilidad, irritabilidad, una pasión mutua por la crítica y una exagerada necesidad de reconocimiento alienado a los hermanos, de los cuales Jacob tenía el intelecto más lento pero más profundo.
Por supuesto la disputa entre los hermanos sobre quién podría obtener el mayor reconocimiento fue particularmente estúpida en el sentido que ambos hicieron contribuciones a las matemáticas de la mayor importancia. Si la rivalidad les impulsó a cosas más grandes o si tal vez han logrado más, o si podría haber habido una colaboración entre ellos, resulta imposible decirlo. Ahora examinaremos algunas de las principales contribuciones realizadas por Jacob Bernoulli en una etapa importante en el desarrollo de las matemáticas siguiendo el trabajo de Leibnizsobre el cálculo.
Primeras contribuciones importantes de Jacob Bernoulli eran un folleto sobre los paralelos de la lógica y álgebra publicado en 1685, trabajo sobre probabilidad en 1685 y geometría en 1687. Su geometría dio una construcción para cualquier triángulo se dividen en cuatro partes iguales con dos líneas perpendiculares.
En 1689 había publicado importantes trabajos en serie infinita y publicó su ley de los grandes números en teoría de la probabilidad. La interpretación de la probabilidad como frecuencia relativa dice que si se repite un experimento una gran cantidad de veces y luego la frecuencia relativa con la que se produce un evento es igual a la probabilidad del evento. La ley de los grandes números es una interpretación matemática de este resultado. Jacob Bernoulli publicó cinco tratados de serie infinita entre 1682 y 1704. Los dos primeros de estos contienen muchos resultados, tales como fundamentales resultado eso ? (1 /n) diverge, Bernoulli creía eran nuevas, pero habían sido comprobados por Mengoli, 40 años antes. Bernoulli no pudo encontrar una forma cerrada para ? (1 /n2), pero mostró que converge a un límite finito de menos de 2. Euler fue el primero en encontrar la suma de esta serie en 1737. Bernoulli también estudió la serie exponencial que salió de examinar el interés compuesto.
En mayo de 1690 en un artículo publicado en Acta Eruditorum, Jacob Bernoulli demostró que el problema de determinar el isochrone es equivalente a resolver una no lineal de primer orden ecuación diferencial. El isochrone o curva de descenso constante, es la curva a lo largo de la cual una partícula descenderá bajo gravedad desde cualquier punto de la parte inferior exactamente el mismo tiempo, no importa el punto de partida. Fue estudiado por Huygens en 1687 y Leibniz en 1689. Después de encontrar la ecuación diferencial, Bernoulli entonces fue resuelto por lo que ahora llamamos separación de variables. El papel de Jacob Bernoulli en 1690 es importante para la historia del cálculo, ya que el término integral aparece por primera vez con su significado de la integración. En 1696 Bernoulli resolvió la ecuación, que ahora se llama "la ecuación de Bernoulli"
y' = p(x)y + q(x)yn
Hofmann describe esta parte de su trabajo como:
... trabajar en mayor prueba de Bernoulli cuidadosa y crítica así como contemporánea contribuciones a las matemáticas infinitesimales y de su perseverancia y capacidad analítica para abordar problemas especiales pertinentes, incluso aquellas de carácter mecánico dinámico.
Jacob Bernoulli también descubrió un método general para determinar el cambio de una curva como la envoltura de los círculos de curvatura. También investigó las curvas cáusticas y en particular estudió estas curvas asociadas de la parábola, la espiral logarítmica y epicycloids alrededor de 1692. El lemniscate de Bernoulli fue la primera concebido por Jacob Bernoulli en 1694. En 1695 investigó el problema del puente levadizo que busca la curva requerida para que un peso se deslizase a lo largo del cable siempre mantiene el puente levadizo equilibrado.
La obra más original de Jacob Bernoulli era Ars Conjectandi publicado en Basilea en 1713, ocho años después de su muerte. La obra estaba incompleta en el momento de su muerte, pero aún es una obra de la mayor importancia en la teoría de la probabilidad. En el libro de Bernoulli ha comentado el trabajo de otros, la probabilidad, en particular la obra de van Schooten, Leibnizy Prestet. Los números de Bernoulli aparecen en el libro, en una discusión de la serie exponencial. Muchos ejemplos se dan en cuanto uno esperaría ganar jugando varios juego de azar. Hay interesantes reflexiones sobre qué probabilidad es realmente:
... probabilidad como un grado apreciable de certeza; necesidad y oportunidad; moral contra Esperanza matemática; a priori un a posteriori una probabilidad; expectativa de ganar cuando los jugadores se dividen según destreza; respecto de todos los argumentos disponibles, su valoración y su evaluación calculable; Ley de los grandes números.
Hofmann resume las contribuciones de Jacob Bernoulli como sigue:
Bernoulli había avanzado grandemente la álgebra, el cálculo infinitesimal, el cálculo de variaciones, la mecánica, la teoría de la serie y la teoría de la probabilidad. Era obstinado, terco, agresivo, vengativo, acosados por sentimientos de inferioridad y todavía convencido de sus propias capacidades. Con estas características, necesariamente tenía que chocar con su hermano igualmente dispuesto. Sin embargo él ejerció la influencia más duradera en el último.
Bernoulli fue uno de los promotores más importantes de los métodos formales de mayor análisis. Astucia y la elegancia se encuentran raramente en su método de presentación y de expresión, pero hay un máximo de integridad.
Jacob Bernoulli continuó manteniendo la Cátedra de matemáticas en Basilea hasta su muerte en 1705, cuando la Presidencia fue llevada por su hermano Johann. Jacob había encontrado siempre las propiedades de la espiral logarítmica para ser casi mágico y él había pedido que se tallara en su lápida con el significado de Eadem Mutata Resurgo inscripción en latín.